
DISEÑO COMPUTARIZADO

TAREA 1 (Entrega: 21 de Abril de 2013)

Problema Un sistema de péndulo simple posee 1 grado de libertad y su movimiento en el plano está completamente determinado por el ángulo θ medido con respecto a la vertical. La ecuación diferencial que gobierna el movimiento del péndulo bajo la acción de gravedad está dada por:

Se pide:

- Escribir un programa en Fortran que permita resolver la ecuación diferencial que gobierna el movimiento del péndulo usando el método de Euler (explícito e implícito). El programa debe tener como parámetros de entrada la longitud l, la masa m, la posición inicial θ_0 , la velocidad inicial $\dot{\theta}$, el método de integración (explícito o implícito), el tiempo total de integración y el paso de tiempo.
- Compare los resultados obtenidos con los métodos programados para un tiempo total de 30 s y los siguiente pasos de tiempo:

h_1	h_2	h_3
0,001	0,01	0,1

Además, use las siguientes condiciones iniciales

$(\theta_0,\dot{\theta}_0)_1$	$(\theta_0,\dot{\theta}_0)_2$	$(\theta_0,\dot{\theta}_0)_3$
$(\pi/2,0)$	$(\pi/6,0)$	$(\pi/10,0)$

- Se pide también obtener para los diferentes pasos de tiempo, métodos de integración y ángulos iniciales, las siguientes gráficos:
 - Ángulo θ en función del tiempo, comparando para un mismo integrador diferentes pasos de tiempo.

- Posición x en función del tiempo, comparando para un mismo integrador diferentes pasos de tiempo.
- Posición y en función del tiempo, comparando para un mismo integrador diferentes pasos de tiempo.
- La trayectoria del péndulo, comparando diferentes integradores para un mismo pasos de tiempo.
- Energía total (cinética y potencial) del péndulo en función del tiempo, comparando diferentes integradores para un mismo pasos de tiempo.
- Compare los resultados numéricos obtenidos con la solución analítica aproximada dada por:

$$\theta(t) = \theta_0 \cos \sqrt{\frac{g}{l}} t$$

Use los diferentes integradores programados, dibuje el ángulo y la energía total en función del tiempo para los diferentes pasos de tiempo y condiciones iniciales.

En esta tarea se evaluará:

Informe Elaboración de un informe que deberá entregarse en formato electrónico (PDF) y también impreso.

Contenido Calidad del contenido, que debe incluir los supuestos teóricos utilizados, los métodos programados, las figuras explicativas, los comentarios de las figuras y los resultados obtenidos.

Código Incorporación en el informe del código Fortran debidamente comentado.

Nota:

El informe debe tener máximo 10 páginas escrito en tercera persona. Si se usa alguna referencia bibliográfica indicarla en el mismo texto y citarla de acuerdo a la norma de citación usada en las memorias del Departamento.