

TABLE G-1 DEFLECTIONS AND SLOPES OF CANTILEVER BEAMS

$v=$ deflection in the y direction (positive upward)
$v^{\prime}=d v / d x=$ slope of the deflection curve
$\delta_{B}=-v(L)=$ deflection at end B of the beam (positive downward)
$\theta_{B}=-v^{\prime}(L)=$ angle of rotation at end B of the beam (positive clockwise)
$E I=$ constant

1

$$
\begin{aligned}
& v=-\frac{q x^{2}}{24 E I}\left(6 L^{2}-4 L x+x^{2}\right) \quad v^{\prime}=-\frac{q x}{6 E I}\left(3 L^{2}-3 L x+x^{2}\right) \\
& \delta_{B}=\frac{q L^{4}}{8 E I} \quad \theta_{B}=\frac{q L^{3}}{6 E I}
\end{aligned}
$$

2

$v=-\frac{q x^{2}}{24 E I}\left(6 a^{2}-4 a x+x^{2}\right) \quad(0 \leq x \leq a)$
$v^{\prime}=-\frac{q x}{6 E I}\left(3 a^{2}-3 a x+x^{2}\right) \quad(0 \leq x \leq a)$
$v=-\frac{q a^{3}}{24 E I}(4 x-a) \quad v^{\prime}=-\frac{q a^{3}}{6 E I} \quad(a \leq x \leq L)$
At $x=a: \quad v=-\frac{q a^{4}}{8 E I} \quad v^{\prime}=-\frac{q a^{3}}{6 E I}$
$\delta_{B}=\frac{q a^{3}}{24 E I}(4 L-a) \quad \theta_{B}=\frac{q a^{3}}{6 E I}$

3

$$
\begin{aligned}
& v=-\frac{q b x^{2}}{12 E I}(3 L+3 a-2 x) \quad(0 \leq x \leq a) \\
& v^{\prime}=-\frac{q b x}{2 E I}(L+a-x) \quad(0 \leq x \leq a) \\
& v=-\frac{q}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}-4 a^{3} x+a^{4}\right) \quad(a \leq x \leq L) \\
& v^{\prime}=-\frac{q}{6 E I}\left(x^{3}-3 L x^{2}+3 L^{2} x-a^{3}\right) \quad(a \leq x \leq L) \\
& \text { At } x=a: \quad v=-\frac{q a^{2} b}{12 E I}(3 L+a) \quad v^{\prime}=-\frac{q a b L}{2 E I} \\
& \delta_{B}=\frac{q}{24 E I}\left(3 L^{4}-4 a^{3} L+a^{4}\right) \quad \theta_{B}=\frac{q}{6 E I}\left(L^{3}-a^{3}\right)
\end{aligned}
$$

4

$$
\begin{aligned}
& v=-\frac{P x^{2}}{6 E I}(3 L-x) \quad V^{\prime}=-\frac{P x}{2 E I}(2 L-x) \\
& \delta_{B}=\frac{P L^{3}}{3 E I} \quad \theta_{B}=\frac{P L^{2}}{2 E I}
\end{aligned}
$$

$5 \underbrace{\leftarrow} \frac{\downarrow^{P}}{\square-b \rightarrow 1}$
$v=-\frac{P x^{2}}{6 E I}(3 a-x) \quad v^{\prime}=-\frac{P x}{2 E I}(2 a-x) \quad(0 \leq x \leq a)$
$v=-\frac{P a^{2}}{6 E I}(3 x-a) \quad v^{\prime}=-\frac{P a^{2}}{2 E I} \quad(a \leq x \leq L)$
At $x=a: \quad v=-\frac{P a^{3}}{3 E I} \quad v^{\prime}=-\frac{P a^{2}}{2 E I}$
$\delta_{B}=\frac{P a^{2}}{6 E I}(3 L-a) \quad \theta_{B}=\frac{P a^{2}}{2 E I}$
$6 \quad$ -

$$
\begin{array}{ll}
v=-\frac{M_{0} x^{2}}{2 E I} & v^{\prime}=-\frac{M_{0} x}{E I} \\
\delta_{B}=\frac{M_{0} L^{2}}{2 E I} & \theta_{B}=\frac{M_{0} L}{E I}
\end{array}
$$

7
$v=-\frac{M_{0} x^{2}}{2 E I} \quad v^{\prime}=-\frac{M_{0} x}{E I} \quad(0 \leq x \leq a)$
$v=-\frac{M_{0} a}{2 E I}(2 x-a) \quad v^{\prime}=-\frac{M_{0} a}{E I} \quad(a \leq x \leq L)$
At $x=a: \quad v=-\frac{M_{0} a^{2}}{2 E I} \quad v^{\prime}=-\frac{M_{0} a}{E I}$
$\delta_{B}=\frac{M_{0} a}{2 E I}(2 L-a) \quad \theta_{B}=\frac{M_{0} a}{E I}$

8

$V=-\frac{q_{0} x^{2}}{120 L E I}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)$
$v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(4 L^{3}-6 L^{2} x+4 L x^{2}-x^{3}\right)$
$\delta_{B}=\frac{q_{0} L^{4}}{30 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{24 E I}$

9
$v=-\frac{q_{0} x^{2}}{120 L E I}\left(20 L^{3}-10 L^{2} x+x^{3}\right)$
$v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(8 L^{3}-6 L^{2} x+x^{3}\right)$
$\delta_{B}=\frac{11 q_{0} L^{4}}{120 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{8 E I}$

10

$$
\begin{aligned}
q_{0} \quad q=q_{0} \cos \frac{\pi x}{2 L} & v
\end{aligned}=-\frac{q_{0} L}{3 \pi^{4} E I}\left(48 L^{3} \cos \frac{\pi x}{2 L}-48 L^{3}+3 \pi^{3} L x^{2}-\pi^{3} x^{3}\right), ~ \begin{aligned}
v^{\prime} & =-\frac{q_{0} L}{\pi^{3} E I}\left(2 \pi^{2} L x-\pi^{2} x^{2}-8 L^{2} \sin \frac{\pi x}{2 L}\right) \\
\delta_{B} & =\frac{2 q_{0} L^{4}}{3 \pi^{4} E I}\left(\pi^{3}-24\right) \quad \theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}\left(\pi^{2}-8\right)
\end{aligned}
$$

$E I=$ constant
$v=$ deflection in the y direction (positive upward)
$v^{\prime}=d v / d x=$ slope of the deflection curve
$\delta_{C}=-v(L / 2)=$ deflection at midpoint C of the beam (positive downward)
$x_{1}=\operatorname{distance}$ from support A to point of maximum deflection
$\delta_{\text {max }}=-v_{\text {max }}=$ maximum deflection (positive downward)
$\theta_{A}=-v^{\prime}(0)=$ angle of rotation at left-hand end of the beam (positive clockwise)
$\theta_{B}=v^{\prime}(L)=$ angle of rotation at right-hand end of the beam (positive counterclockwise)

1

$$
\begin{aligned}
& v=-\frac{q x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right) \\
& v^{\prime}=-\frac{q}{24 E I}\left(L^{3}-6 L x^{2}-4 x^{3}\right) \\
& \delta_{C}=\delta_{\max }=\frac{5 q L^{4}}{384 E I} \quad \theta_{A}=\theta_{B}=\frac{q L^{3}}{24 E I}
\end{aligned}
$$

2

$$
\begin{aligned}
& v=-\frac{q x}{384 E I}\left(9 L^{3}-24 L x^{2}+16 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right) \\
& v^{\prime}=-\frac{q}{384 E I}\left(9 L^{3}-72 L x^{2}+64 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right) \\
& v=-\frac{q L}{384 E I}\left(8 x^{3}-24 L x^{2}+17 L^{2} x-L^{3}\right) \quad\left(\frac{L}{2} \leq x \leq L\right) \\
& v^{\prime}=-\frac{q L}{384 E I}\left(24 x^{2}-48 L x+17 L^{2}\right) \quad\left(\frac{L}{2} \leq x \leq L\right) \\
& \delta_{C}=\frac{5 q L^{4}}{768 E I} \quad \theta_{A}=\frac{3 q L^{3}}{128 E I} \quad \theta_{B}=\frac{7 q L^{3}}{384 E I}
\end{aligned}
$$

3

$$
\begin{aligned}
& v=-\frac{q x}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+2 a^{2} x^{2}-4 a L x^{2}+L x^{3}\right) \quad(0 \leq x \leq a) \\
& v^{\prime}=-\frac{q}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+6 a^{2} x^{2}-12 a L x^{2}+4 L x^{3}\right) \quad(0 \leq x \leq a) \\
& v=-\frac{q a^{2}}{24 L E I}\left(-a^{2} L+4 L^{2} x+a^{2} x-6 L x^{2}+2 x^{3}\right) \quad(a \leq x \leq L) \\
& v^{\prime}=-\frac{q a^{2}}{24 L E I}\left(4 L^{2}+a^{2}-12 L x+6 x^{2}\right) \quad(a \leq x \leq L) \\
& \theta_{A}=\frac{q a^{2}}{24 L E I}(2 L-a)^{2} \quad \theta_{B}=\frac{q a^{2}}{24 L E I}\left(2 L^{2}-a^{2}\right)
\end{aligned}
$$

4

$$
\begin{aligned}
& v=-\frac{P x}{48 E I}\left(3 L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{P}{16 E I}\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right) \\
& \delta_{C}=\delta_{\max }=\frac{P L^{3}}{48 E I} \quad \theta_{A}=\theta_{B}=\frac{P L^{2}}{16 E I}
\end{aligned}
$$

5

$v=-\frac{P b x}{6 L E I}\left(L^{2}-b^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P b}{6 L E I}\left(L^{2}-b^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)$
$\theta_{A}=\frac{\operatorname{Pab}(L+b)}{6 L E I} \quad \theta_{B}=\frac{\operatorname{Pab}(L+a)}{6 L E I}$
If $a \geq b, \quad \delta_{C}=\frac{P b\left(3 L^{2}-4 b^{2}\right)}{48 E I} \quad$ If $a \leq b, \quad \delta_{C}=\frac{P a\left(3 L^{2}-4 a^{2}\right)}{48 E I}$
If $a \geq b, \quad x_{1}=\sqrt{\frac{L^{2}-b^{2}}{3}} \quad$ and $\quad \delta_{\max }=\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{}$

$$
\begin{array}{ll}
v=-\frac{P x}{6 E I}\left(3 a L-3 a^{2}-x^{2}\right) & v^{\prime}=-\frac{P}{2 E I}\left(a L-a^{2}-x^{2}\right) \quad(0 \leq x \leq a) \\
v=-\frac{P a}{6 E I}\left(3 L x-3 x^{2}-a^{2}\right) & v^{\prime}=-\frac{P a}{2 E I}(L-2 x) \quad(a \leq x \leq L-a) \\
\delta_{C}=\delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) & \theta_{A}=\theta_{B}=\frac{P a(L-a)}{2 E I}
\end{array}
$$

$v=-\frac{M_{0} x}{6 L E I}\left(2 L^{2}-3 L x+x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{6 L E I}\left(2 L^{2}-6 L x+3 x^{2}\right)$
$\delta_{C}=\frac{M_{0} L^{2}}{16 E I} \quad \theta_{A}=\frac{M_{0} L}{3 E I} \quad \theta_{B}=\frac{M_{0} L}{6 E I}$
$x_{1}=L\left(1-\frac{\sqrt{3}}{3}\right) \quad$ and $\quad \delta_{\max }=\frac{M_{0} L^{2}}{9 \sqrt{3} E I}$

$v=-\frac{M_{0} x}{24 L E I}\left(L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{24 L E I}\left(L^{2}-12 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)$
$\delta_{C}=0 \quad \theta_{A}=\frac{M_{0} L}{24 E I} \quad \theta_{B}=-\frac{M_{0} L}{24 E I}$

9

$$
\begin{array}{ll}
v=-\frac{M_{0} x}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-x^{2}\right) & (0 \leq x \leq a) \\
v^{\prime}=-\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-3 x^{2}\right) & (0 \leq x \leq a)
\end{array}
$$

At $x=a: \quad v=-\frac{M_{0} a b}{3 L E I}(2 a-L) \quad v^{\prime}=-\frac{M_{0}}{3 L E I}\left(3 a L-3 a^{2}-L^{2}\right)$
$\theta_{A}=\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}\right) \quad \theta_{B}=\frac{M_{0}}{6 L E I}\left(3 a^{2}-L^{2}\right)$

10

$v=-\frac{M_{0} x}{2 E I}(L-x) \quad v^{\prime}=-\frac{M_{0}}{2 E I}(L-2 x)$
$\delta_{C}=\delta_{\max }=\frac{M_{0} L^{2}}{8 E I} \quad \theta_{A}=\theta_{B}=\frac{M_{0} L}{2 E I}$

11

$$
\begin{aligned}
& v=-\frac{q_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right) \\
& v^{\prime}=-\frac{q_{0}}{360 L E I}\left(7 L^{4}-30 L^{2} x^{2}+15 x^{4}\right) \\
& \delta_{C}=\frac{5 q_{0} L^{4}}{768 E I} \quad \theta_{A}=\frac{7 q_{0} L^{3}}{360 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{45 E I} \\
& x_{1}=0.5193 L \quad \delta_{\max }=0.00652 \frac{q_{0} L^{4}}{E I}
\end{aligned}
$$

12

$v=-\frac{q_{0} x}{960 L E I}\left(5 L^{2}-4 x^{2}\right)^{2} \quad\left(0 \leq x \leq \frac{L}{2}\right)$
$v^{\prime}=-\frac{q_{0}}{192 L E I}\left(5 L^{2}-4 x^{2}\right)\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)$
$\delta_{C}=\delta_{\max }=\frac{q_{0} L^{4}}{120 E I} \quad \theta_{A}=\theta_{B}=\frac{5 q_{0} L^{3}}{192 E I}$

$v=-\frac{q_{0} L^{4}}{\pi^{4} E I} \sin \frac{\pi x}{L} \quad v^{\prime}=-\frac{q_{0} L^{3}}{\pi^{3} E I} \cos \frac{\pi x}{L}$
$\delta_{C}=\delta_{\max }=\frac{q_{0} L^{4}}{\pi^{4} E I} \quad \theta_{A}=\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}$

Copyright 2004 Thomson Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

