DEPARTAMENTO DE
INGENIERIA

MECANICA
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Diseno computarizado CELULAR
PEP2 - 13 de enero de 2026
Apellidos Nombres Tiempo: 120 min
Problema 1.— (2.5 Pts.) Determine en forma F = 10000 N
aproximada la tension en el punto central P de la es-
tructura de la figura; ésta se encuentra compuesta por 45 °

dos barras y una placa cuadrada que esta empotrada a
una pared. La placa es de 10 mm de espesor y de 2000
mm de lado, las barras son de una seccion cuadrada
de 50 mm de lado y el material de ambos elementos
(barras y placa) es acero con F = 200 GPa. Utilizando
el método de elementos finitos, se pide:
1. Modelo de elementos finitos (malla) con el
minimo de elementos e indique las condiciones
de borde usadas. (0.5 Pts.)

2. Matriz de rigidez ensamblada. (0.5 Pts.)
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3. Desplazamiento en el punto de aplicacién de la 9000

carga F y desplazamiento en P (1.0 Pts.) '

4. Tensiones en el punto P y tensiéon de Von Mises

(0.5 Pts.)

Figura 1: Problema 1, medidas en mm

Problema 2.— (2.0 Pts.) Se desea formular un elemento finito unidimensional para barras utilizando tres
nodos, los cuales se ubican en las posiciones x1 = 0, 29 = L/2 y x3 = L.

1. Obtenga las funciones de interpolacién (1.0 pt)
2. Determine la matriz de rigidez, usando la teorfa vista en clases. (1.0 pt).
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Figura 2: Problema 2



Problema 3.— (1.5 Pts.) Se tiene una placa triangular equildtera de acero empotrada en una superficie
horizontal, las dimensiones se indican en la figura 3, el espesor de la placa es 10 mm, por razones de diseno es
necesario evaluarla considerando la aceleracién de gravedad aumentada igual a 30 m/s?. Usando el método
de elementos finitos :

1. Obtenga el desplazamiento del punto superior. (1.0 pt)

2. Determine los esfuerzos en el centroide de la placa. (0.5 pt).

1000 mm
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Figura 3: Problema 3



Pauta

Problema 1.1

Se realiza una simetria en la diagonal y se rota el sistema, también se aplican las condiciones de borde
correspondientes.

y
F/2
X
Problema 1.2
Rigidez de la barra en 45°
u2 v2 u3 v3

1, 250000 - 10° 1,250000 - 10> —1,250000 - 10° —1,250000 - 107 2

K1 = | 1250000 - 10° 1,250000 - 10> —1,250000 - 105 —1,250000 - 10° | v2
—1,250000 - 10°  —1,250000 - 10°  1,250000 - 10° 1,250000 - 10° | w3
—1,250000 - 10°  —1,250000 - 10°  1,250000 - 10° 1,250000 - 10° 1 3

Rigidez de la Placa y Coordenadas para caso 45°

Definiciéon de coordenadas y area para caso 45°

xi =0 yi:=0
zj = 2000 - cos(45°) yj := —2000 - sin(45°)
zk = +/(2) - (20002) = 2828, 427 yk =0
20002
Ap =
P 2

Se calculan los coeficientes a, b y c.



Matriz de Rigidez K2 para caso 45°
K2:=t-Ap

vl
—3,571429 - 10°
7,417582 - 10°
3,846154 - 10°
—1,098901 - 106
—27472,53
3,571429 - 10°

u2
—3,846154 - 10°
3,846154 - 10°
7,692308 - 10°
0, 000000
—3,846154 - 10°
—3,846154 - 10°

ul
- 7,417582 - 10°
—3,571429 - 10°
—3,846154 - 10°
3,296703 - 10°
—3,571429 - 10°
| 27472,53

Matriz Global KG para caso 45°

ul vl u2
r7,417582 —3,571429 —3,846154
—3,571429 7,417582 3,846154
KG — —3,846154  3,846154 8, 942308
3,296703 —10,98901 1, 250000
—3,571429 —0,2747253 —5,096154
| 0,2747253 3,571429 —5,096154

Problema 1.3

Se utiliza la matriz de rigidez global rotada en 45.

.BT.C.B=

v2
3,296703 - 10°
—1,098901 - 10°
0, 000000
2,197802 - 106
—3,296703 - 10°
—1,098901 - 10°

v2
3,296703
—10,98901
1, 250000
23, 22802
—4, 546703
—12,23901

u3 v3
—3,571429 - 10° 27472,53
—27472,53 3,571429 - 10°

—3,846154 - 10°
—3,296703 - 10°
7,417582 - 10°
3,571429 - 10°

u3

—3,571429
—0,2747253
—5,096154
—4, 546703
8, 667582
4,821429

u3 := (KGs5)" - 5000 = 0,005768621 mm

Si llevamos los desplazamientos del nodo 3 a coordenadas globales:

USglobal = [

0,004079031
0,004079031

Desplazamientos en el Punto P (Local y Global)

(ak + bk - xc+ ck - yc) - u3

P:=
b A

=0,

002884311

Si llevamos los desplazamientos del punto P a coordenadas globales:

UPglobal = Rl(—45o) . |:0

u

-

0,002039516
0,002039516

|

v3
0,27472537
3,571429
—5,096154
—12,23901
4, 821429

8,667582

v:=0=0,000000 mm

—3,846154 - 10°
—1,098901 - 106
3,571429 - 10°
7,417582 - 10° |

-10°

vl
u2
v2
u3
V3



A: Static Structural
Directional Deformation
Type: Directional Deformation(X Axis)
Unit mm

Global Coordinate System
Time: 15

16-01-2026 3:55:24

0,004079 Max
0,0038391
0,0035991
0,0033592
0,0031193
0,0028793
0,0026394
0,0023994
0,0021595
0,0019195
0,0016796
0,0014397
0,0011997
0,00095977
0,00071983
0,00047989
0,00023994
0 Min

0,00 500,00 1000,00 (mm)
| | | ]
250,00 750,00

Problema 1.4

Calculo de Tensiones

Las tensiones del punto P, corresponden a las mismas que las que se calculan en toda la placa, debido a que
son constantes en toda la placa.

0
0
0 0, 4482452
c=C-B ol = 0,1344736 MPa
0, 1568858
u3
- 0 -

rotando las tensiones en —45 (—90 en circulo de mohr)

021 O, 1344736
o= |011| = O, 4482452
031 0, 1568858

Tension de Von Mises

oVM = \/0'112 + 0'212 — 011 021 + 3 - 0'312 = 0,4822543 MPa



Problema 2.
Problema 2.1

Se propone una funcion de interpolacion cuadratica utilizando los 3 nodos.
_ 2
u(z) = ag + a1 + agx

Donde zx es la posicion horizontal de la barra, tomando x = 0 en el nodo 1.
Debido a que se conocen los desplazamientos en cada uno de los nodos, es posible determinar el siguiente
sistema de ecuaciones:

1 0 0 ao n
1L )] ()=
1 L L? Q2 U3

La resolucién del sistema permite obtener los coeficientes del campo de desplazamientos aproximado de la
forma

u(z) = ag + a1x + axr?,

donde los coeficientes estan dados por:
ap = Uy,

—3U1 + 4UQ — Uus
a; = L ’

2(’&1 — 2U2 + U,g)
L? '
Por lo tanto, el campo de desplazamientos interpolado resulta:

o =

-3 duy — 2 -2
uy + 4uo U3x+ (u1 Uy + Uug) 22

u(z) = wy 7 732

Esta interpolacion corresponde a un polinomio cuadrético que reproduce exactamente los desplazamientos
nodales en x = 0, z = L/2 y © = L, siendo equivalente a un elemento unidimensional cuadrético de tres
nodos.

De manera equivalente, el campo de desplazamientos puede expresarse en términos de las funciones de forma
cuadraticas como
u(z) = Ni(z) up + Na(x) ug + N3(x) us,

donde las funciones de forma asociadas a los nodos © =0, x = L/2 y x = L estan dadas por:

3r 222 dr  42? r  2a°
M@ =1-F+T M@= -7 M) =-p+7



Problema 2.2

Se determina el campo de deformaciones a partir del campo de desplazamientos interpolado. La deformacién
axial se define como la derivada del desplazamiento respecto a la coordenada espacial x:

ou
e(x) = o

Utilizando la expresion del campo de desplazamientos en términos de las funciones de forma,
u(z) = Ni(z) up + Na(x) ug + N3(x) us,

la deformacion puede escribirse como:

ON- ON- ON.
6(%) = axl U + 8; Ug + 8x3

Derivando las funciones de forma cuadraticas:
ON; 3  4x ON,

Uus

4
9r L2 or L I ox L I?
se obtiene finalmente el campo de deformaciones:

—3U1 + 4UQ — U3 4(U1 — 2’&2 + U3)
e(z) = 7 + 72 x

En forma matricial, la expresion anterior puede escribirse como:
Uy
us

donde la matriz de deformacién B(z) estd dada por:

B(x): _§+4_33 £_8_.CE _l+4_33
L L[? L L2 L I12)

A partir del campo de deformaciones

e(r) = B(x)u,
y considerando un material elastico lineal, el esfuerzo axial esta dado por:
o(x) = Ee(x).

La matriz de rigidez del elemento se obtiene como:
L
K :/ B’ () EAB(z)dx
0

Sustituyendo la matriz de deformacion
3 4dx 4 8 1 4z
Bx)=(———+—= ——— ——+4+ =1,
(z) ( L—{_L2 L L? L+L2>
y evaluando la integral en el dominio del elemento, se obtiene la matriz de rigidez del elemento cuadratico

unidimensional de tres nodos:

7 =8 1
K—E—A -8 16 -8

3L\ 1 g 7



Problema 3.1

Se considera un elemento triangular equilatero de lado 1m, con la siguiente numeracién nodal:

1\/5)

x; = (0,0), xp = (1,0), X3 = <§, D

El 4rea del elemento es

A= ? — 0.4330 m?
Funciones de forma
Y Y 2y
l—oz— = 0 r——= 0 — 0
N(z,y) = V3 V3 V3
’ 0 I A S R S
V3 V3 V3
Matriz constitutiva
Se adopta un estado plano de tensiones:
1 v 0
E
D= vl 0 B =200 CGPa, v =03
1 -2 00 1—v
2
Matriz de rigidez del elemento
La matriz de rigidez del elemento viene dada por
1.06 0.357  —0.841 —0.0275 —0.222 —0.330]
0.357 0.650  0.0275 —0.0159 —0.385 —0.634
Ke — 10° —0.841  0.0275 1.06  —0.357 —0.222 0.330 IN/m]

—0.0275 —0.0159 —-0.357 0.650 0.385 —0.634
—-0.222  -0.385 —0.222 0.385 0.444 0.00
| —0.330  —-0.634 0.330 —0.634  0.00 L.27 ]

Vector de fuerzas por peso propio

La fuerza de cuerpo por unidad de volumen es

b = {—(;g] : p = 7850 kg/m®, g =30 m/s’

pg = 7850 - 30 = 2.355 x 10° N/m®

El vector de fuerzas nodales debido a fuerzas de cuerpo se calcula mediante la integral de volumen sobre el

elemento:
flf:/Ndevzt//NT[ 0 ]dA
Vv A —pPg



El vector de fuerzas nodales equivalentes resulta

S
—pg
At | 0
ff=— , t=0.01 m
b3 | —py
0
| —PY ]
At 0.4330-0.01
= T T 1443 x 1073 m?
3 3
_ 0 3
—3.40 x 102
. 0
b = —3.40 x 102 N
0
| —3.40 x 107

Condiciones de borde

Los nodos 1 y 2 se consideran empotrados:

U1:U1:U2:?}2:0

El sistema reducido queda asociado tinicamente a los grados de libertad del nodo 3:

us| 0
K L}J B {—3.40 X 102}

donde

Ko — 10° {0.444 0.00}
33 —

0.00 1.27
Desplazamientos
Por simetria del problema y carga puramente vertical:
Uz = 0
—3.40 x 10?

1.27 x 109
El desplazamiento vertical del nodo libre es:

V3 =

vy ~ —0.268 pum

Problema 3.2

El campo de esfuerzos es uniforme y se calcula como o = DBu®. Con los desplazamientos obtenidos u®

(0,0,0,0,0,—2.68 x 1077]7, el calculo es:

=-268%x 107" m



0
Oz E 1 v 0 1 61 0 52 O 63 0 0
Oy | =12 |V 10 oA 0 7m0 7% 0 %) q,
Ty 00 L~ n Bi v2 P2 3 B3 |

B V3

Sustituyendo los valores geométricos y el desplazamiento vertical vs:

Oe 1 03 0 0
oy | =2198 x 10" 103 1 0 —3.09 x 1077
Tay 0 0 035 0

Resultados finales:

0ze = —20.37 kPa
o,y = —67.91 kPa
Ty = 0 kPa

Calculo de Esfuerzo de Von Mises:

1
v =\ 5 [0 = 00+ (0~ 0.+ (0~ 02+ 607, + 7+ 73]

1
Gy = \/5 (20,37 + 67,91)2 + (—67,91 — 0)2 + (0 + 20,37)2 + 0]

1
oy = \/5 [(47,54)? + (—67,91)2 + (20, 37)?]
ovM = 60, 36 kPa

Campo de desplazamientos

Figura 4: Campo de desplazamientos.



