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PEP2 – 13 de enero de 2026

Apellidos Nombres Tiempo: 120 min

Problema 1.– (2.5 Pts.) Determine en forma
aproximada la tensión en el punto central P de la es-
tructura de la figura; ésta se encuentra compuesta por
dos barras y una placa cuadrada que está empotrada a
una pared. La placa es de 10 mm de espesor y de 2000
mm de lado, las barras son de una sección cuadrada
de 50 mm de lado y el material de ambos elementos
(barras y placa) es acero con E = 200 GPa. Utilizando
el método de elementos finitos, se pide:

1. Modelo de elementos finitos (malla) con el
mı́nimo de elementos e indique las condiciones
de borde usadas. (0.5 Pts.)

2. Matriz de rigidez ensamblada. (0.5 Pts.)

3. Desplazamiento en el punto de aplicación de la
carga F y desplazamiento en P (1.0 Pts.)

4. Tensiones en el punto P y tensión de Von Mises
(0.5 Pts.)

Figura 1: Problema 1, medidas en mm

Problema 2.– (2.0 Pts.) Se desea formular un elemento finito unidimensional para barras utilizando tres
nodos, los cuales se ubican en las posiciones x1 = 0, x2 = L/2 y x3 = L.

1. Obtenga las funciones de interpolación (1.0 pt)

2. Determine la matriz de rigidez, usando la teoŕıa vista en clases. (1.0 pt).

Figura 2: Problema 2



Problema 3.– (1.5 Pts.) Se tiene una placa triangular equilátera de acero empotrada en una superficie
horizontal, las dimensiones se indican en la figura 3, el espesor de la placa es 10 mm, por razones de diseño es
necesario evaluarla considerando la aceleración de gravedad aumentada igual a 30 m/s2. Usando el método
de elementos finitos :

1. Obtenga el desplazamiento del punto superior. (1.0 pt)

2. Determine los esfuerzos en el centroide de la placa. (0.5 pt).

Figura 3: Problema 3



Pauta

Problema 1.1

Se realiza una simetŕıa en la diagonal y se rota el sistema, también se aplican las condiciones de borde
correspondientes.
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Problema 1.2

Rigidez de la barra en 45◦

K1 =

u2 v2 u3 v3


1, 250000 · 105 1, 250000 · 105 −1, 250000 · 105 −1, 250000 · 105 u2
1, 250000 · 105 1, 250000 · 105 −1, 250000 · 105 −1, 250000 · 105 v2
−1, 250000 · 105 −1, 250000 · 105 1, 250000 · 105 1, 250000 · 105 u3
−1, 250000 · 105 −1, 250000 · 105 1, 250000 · 105 1, 250000 · 105 v3

Rigidez de la Placa y Coordenadas para caso 45°

Definición de coordenadas y área para caso 45°

xi := 0 yi := 0

xj := 2000 · cos(45◦) yj := −2000 · sin(45◦)
xk :=

√
(2) · (20002) = 2828, 427 yk := 0

Ap :=
20002

2

Se calculan los coeficientes a, b y c.



Matriz de Rigidez K2 para caso 45°

K2 := t · Ap ·BT · C ·B =

u1 v1 u2 v2 u3 v3


7, 417582 · 105 −3, 571429 · 105 −3, 846154 · 105 3, 296703 · 105 −3, 571429 · 105 27472, 53 u1
−3, 571429 · 105 7, 417582 · 105 3, 846154 · 105 −1, 098901 · 106 −27472, 53 3, 571429 · 105 v1
−3, 846154 · 105 3, 846154 · 105 7, 692308 · 105 0, 000000 −3, 846154 · 105 −3, 846154 · 105 u2
3, 296703 · 105 −1, 098901 · 106 0, 000000 2, 197802 · 106 −3, 296703 · 105 −1, 098901 · 106 v2
−3, 571429 · 105 −27472, 53 −3, 846154 · 105 −3, 296703 · 105 7, 417582 · 105 3, 571429 · 105 u3

27472, 53 3, 571429 · 105 −3, 846154 · 105 −1, 098901 · 106 3, 571429 · 105 7, 417582 · 105 v3

Matriz Global KG para caso 45°

KG =

u1 v1 u2 v2 u3 v3


7, 417582 −3, 571429 −3, 846154 3, 296703 −3, 571429 0, 2747253
−3, 571429 7, 417582 3, 846154 −10, 98901 −0, 2747253 3, 571429
−3, 846154 3, 846154 8, 942308 1, 250000 −5, 096154 −5, 096154
3, 296703 −10, 98901 1, 250000 23, 22802 −4, 546703 −12, 23901
−3, 571429 −0, 2747253 −5, 096154 −4, 546703 8, 667582 4, 821429
0, 2747253 3, 571429 −5, 096154 −12, 23901 4, 821429 8, 667582

· 105

Problema 1.3

Se utiliza la matriz de rigidez global rotada en 45.

u3 := (KG5,5)
−1 · 5000 = 0, 005768621 mm

Si llevamos los desplazamientos del nodo 3 a coordenadas globales:

u3global =

[
0, 004079031
0, 004079031

]
mm

Desplazamientos en el Punto P (Local y Global)

uP :=
(ak + bk · xc+ ck · yc) · u3

∆
= 0, 002884311 v := 0 = 0, 000000 mm

Si llevamos los desplazamientos del punto P a coordenadas globales:

uPglobal := R1(−45◦) ·
[
u
0

]
=

[
0, 002039516
0, 002039516

]
mm



Problema 1.4

Cálculo de Tensiones

Las tensiones del punto P, corresponden a las mismas que las que se calculan en toda la placa, debido a que
son constantes en toda la placa.

σ := C ·B ·


0
0
0
0
u3
0

 =

0, 44824520, 1344736
0, 1568858

 MPa

rotando las tensiones en −45 (−90 en circulo de mohr)

σ :=

σ21

σ11

σ31

 =

0, 13447360, 4482452
0, 1568858


Tensión de Von Mises

σVM :=
√

σ11
2 + σ21

2 − σ11 · σ21 + 3 · σ31
2 = 0, 4822543 MPa



Problema 2.

Problema 2.1

Se propone una función de interpolación cuadrática utilizando los 3 nodos.

u(x) = a0 + a1x+ a2x
2

Donde x es la posición horizontal de la barra, tomando x = 0 en el nodo 1.
Debido a que se conocen los desplazamientos en cada uno de los nodos, es posible determinar el siguiente
sistema de ecuaciones: 1 0 0

1 L
2

(
L
2

)2
1 L L2

a0
a1
a2

 =

u1

u2

u3

 .

La resolución del sistema permite obtener los coeficientes del campo de desplazamientos aproximado de la
forma

u(x) = a0 + a1x+ a2x
2,

donde los coeficientes están dados por:
a0 = u1,

a1 =
−3u1 + 4u2 − u3

L
,

a2 =
2(u1 − 2u2 + u3)

L2
.

Por lo tanto, el campo de desplazamientos interpolado resulta:

u(x) = u1 +
−3u1 + 4u2 − u3

L
x+

2(u1 − 2u2 + u3)

L2
x2.

Esta interpolación corresponde a un polinomio cuadrático que reproduce exactamente los desplazamientos
nodales en x = 0, x = L/2 y x = L, siendo equivalente a un elemento unidimensional cuadrático de tres
nodos.
De manera equivalente, el campo de desplazamientos puede expresarse en términos de las funciones de forma
cuadráticas como

u(x) = N1(x)u1 +N2(x)u2 +N3(x)u3,

donde las funciones de forma asociadas a los nodos x = 0, x = L/2 y x = L están dadas por:

N1(x) = 1− 3x

L
+

2x2

L2
, N2(x) =

4x

L
− 4x2

L2
, N3(x) = −x

L
+

2x2

L2
.



Problema 2.2

Se determina el campo de deformaciones a partir del campo de desplazamientos interpolado. La deformación
axial se define como la derivada del desplazamiento respecto a la coordenada espacial x:

ϵ(x) =
∂u

∂x

Utilizando la expresión del campo de desplazamientos en términos de las funciones de forma,

u(x) = N1(x)u1 +N2(x)u2 +N3(x)u3,

la deformación puede escribirse como:

ϵ(x) =
∂N1

∂x
u1 +

∂N2

∂x
u2 +

∂N3

∂x
u3

Derivando las funciones de forma cuadráticas:

∂N1

∂x
= − 3

L
+

4x

L2
,

∂N2

∂x
=

4

L
− 8x

L2
,

∂N3

∂x
= − 1

L
+

4x

L2
,

se obtiene finalmente el campo de deformaciones:

ϵ(x) =
−3u1 + 4u2 − u3

L
+

4(u1 − 2u2 + u3)

L2
x

En forma matricial, la expresión anterior puede escribirse como:

ϵ(x) = B(x)u, u =

u1

u2

u3

 ,

donde la matriz de deformación B(x) está dada por:

B(x) =

(
− 3

L
+

4x

L2

4

L
− 8x

L2
− 1

L
+

4x

L2

)
.

A partir del campo de deformaciones
ϵ(x) = B(x)u,

y considerando un material elástico lineal, el esfuerzo axial está dado por:

σ(x) = E ϵ(x).

La matriz de rigidez del elemento se obtiene como:

K =

∫ L

0

BT (x)EAB(x) dx

Sustituyendo la matriz de deformación

B(x) =

(
− 3

L
+

4x

L2

4

L
− 8x

L2
− 1

L
+

4x

L2

)
,

y evaluando la integral en el dominio del elemento, se obtiene la matriz de rigidez del elemento cuadrático
unidimensional de tres nodos:

K =
EA

3L

 7 −8 1
−8 16 −8
1 −8 7

 .



Problema 3.1

Se considera un elemento triangular equilátero de lado 1m, con la siguiente numeración nodal:

x1 = (0, 0), x2 = (1, 0), x3 =

(
1

2
,

√
3

2

)

El área del elemento es

A =

√
3

4
= 0.4330 m2

Funciones de forma

N(x, y) =

1− x− y√
3

0 x− y√
3

0
2y√
3

0

0 1− x− y√
3

0 x− y√
3

0
2y√
3


Matriz constitutiva

Se adopta un estado plano de tensiones:

D =
E

1− ν2

1 ν 0
ν 1 0

0 0
1− ν

2

 , E = 200 GPa, ν = 0.3

Matriz de rigidez del elemento

La matriz de rigidez del elemento viene dada por

Ke = 109


1.06 0.357 −0.841 −0.0275 −0.222 −0.330
0.357 0.650 0.0275 −0.0159 −0.385 −0.634
−0.841 0.0275 1.06 −0.357 −0.222 0.330
−0.0275 −0.0159 −0.357 0.650 0.385 −0.634
−0.222 −0.385 −0.222 0.385 0.444 0.00
−0.330 −0.634 0.330 −0.634 0.00 1.27

 [N/m]

Vector de fuerzas por peso propio

La fuerza de cuerpo por unidad de volumen es

b =

[
0

−ρg

]
, ρ = 7850 kg/m3, g = 30 m/s2

ρg = 7850 · 30 = 2.355× 105 N/m3

El vector de fuerzas nodales debido a fuerzas de cuerpo se calcula mediante la integral de volumen sobre el
elemento:

f eb =

∫
V

NTb dV = t

∫∫
A

NT

[
0

−ρg

]
dA



El vector de fuerzas nodales equivalentes resulta

f eb =
At

3


0

−ρg
0

−ρg
0

−ρg

 , t = 0.01 m

At

3
=

0.4330 · 0.01
3

= 1.443× 10−3 m3

f eb =


0

−3.40× 102

0
−3.40× 102

0
−3.40× 102

 N

Condiciones de borde

Los nodos 1 y 2 se consideran empotrados:

u1 = v1 = u2 = v2 = 0

El sistema reducido queda asociado únicamente a los grados de libertad del nodo 3:

K33

[
u3

v3

]
=

[
0

−3.40× 102

]
donde

K33 = 109
[
0.444 0.00
0.00 1.27

]
Desplazamientos

Por simetŕıa del problema y carga puramente vertical:

u3 = 0

v3 =
−3.40× 102

1.27× 109
= −2.68× 10−7 m

El desplazamiento vertical del nodo libre es:

v3 ≈ −0.268 µm

Problema 3.2

El campo de esfuerzos es uniforme y se calcula como σ = DBue. Con los desplazamientos obtenidos ue =
[0, 0, 0, 0, 0,−2.68× 10−7]T , el cálculo es:



σxx

σyy

τxy

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 1

2A

β1 0 β2 0 β3 0
0 γ1 0 γ2 0 γ3
γ1 β1 γ2 β2 γ3 β3


︸ ︷︷ ︸

B



0
0
0
0
0
v3


Sustituyendo los valores geométricos y el desplazamiento vertical v3:σxx

σyy

τxy

 = 2.198× 1011

 1 0.3 0
0.3 1 0
0 0 0.35


0

−3.09× 10−7

0


Resultados finales:

σxx = −20.37 kPa

σyy = −67.91 kPa

τxy = 0 kPa

Cálculo de Esfuerzo de Von Mises:

σVM =

√
1

2

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6(τ 2xy + τ 2yz + τ 2xz)

]
σVM =

√
1

2
[(−20, 37 + 67, 91)2 + (−67, 91− 0)2 + (0 + 20, 37)2 + 0]

σVM =

√
1

2
[(47, 54)2 + (−67, 91)2 + (20, 37)2]

σVM = 60,36 kPa

Campo de desplazamientos

Figura 4: Campo de desplazamientos.


