
Resistencia de Materiales PEP 1 - 25 de octubre de 2023

Apellidos	Nombres	Tiempo: 90 min

Problema 1.– (3.0 Pts.) El sistema elevador de la Figura 1(a) es capaz de levantar un peso de P=10 kN mediante un sistema de poleas, una cuerda inextensible, y un motor ubicado en E. La polea A, de diámetro $d_A=254$ mm, se soporta sobre una estructura de tres barras de acero (E=210 GPa, $\nu=0.27$, $\sigma_y=250$ MPa, $\tau_y=145$ MPa). La barra \overline{AB} tiene una sección transveral de 400 mm², y las barras \overline{AC} y \overline{AD} poseen una sección de 200 mm². La polea E, de diámetro $d_E=125$ mm, es solidaria al eje macizo del motor (también de acero), el cual tiene un largo $L_{eje}=100$ mm y diámetro ϕ_1 por diseñar (ver Figura 1(b)). Asumiendo que las poleas son rígidas, y libres de fricción, se pide:

- 1. Calcular el diámetro ϕ_1 , en mm, del eje del motor para que el giro de la polea E, respecto al motor, sea menor a 0.5° . Verifique además un FS de 2.5 con dicho diámetro. **0.4 Pts.** Resp: $\phi_1 = 38$ mm.
- 2. Calcular el desplazamiento horizontal del punto A, y el diámetro del pasador de la polea A. Asuma que el pasador está en cortante doble, y que está fabricado de acero. Considere un FS=2 para el cálculo del pasador. Indicación: Para efectos de cálculo, considere a la polea E como un punto. 1.8 Pts. Resp: $\delta_h^A \approx 0$ mm; $\phi = 11$ mm
- 3. Debido a problemas dimensionales, la barra \overline{AD} tuvo que ser retirada del diseño. Obtenga los factores de seguridad de la estructura de barras para: a) Considere la barra \overline{AD} en el cálculo b) No considere la barra \overline{AD} en el cálculo. ¿Qué sucede con la integridad estructural del sistema? **0.8 Pts.** Resp: Fs = 10.8. El factor de seguridad se mantiene inalterado debido a que la barra \overline{AD} está descargada en el diseño inicial.

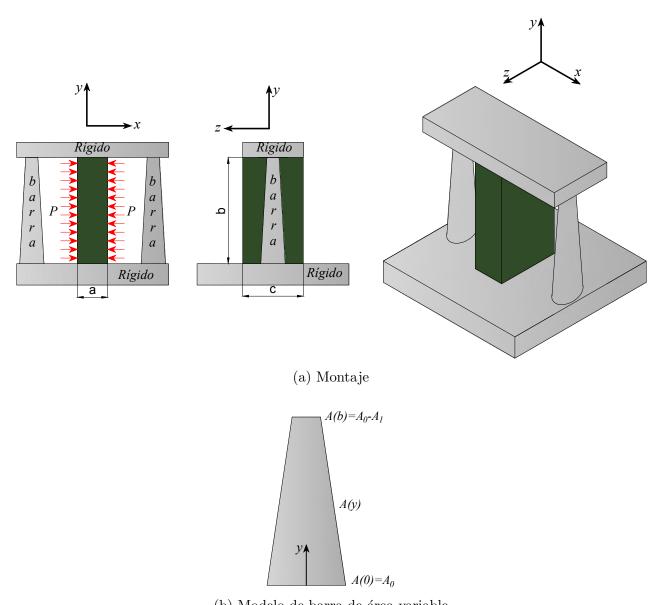

(a) Estructura. Nota: Barra \overline{AD} totalmente horizontal.

Figura 1: Elevador

Problema 2.– (3.0 Pts.) El bloque de la Figura 2, el cual está fabricado de un material elástico lineal, de ancho a = 50 mm, largo b = 300 mm y espesor c = 100 mm, y de módulo de Poisson $\nu = 0.384$, es comprimido por la acción de una fuerza por unidad de superficie $P = 10 \text{ N/mm}^2$, en dirección x. Por acción elástica, el bloque empuja a una placa rígida superior, la cual está soldadas a dos barras de latón ($E_{lat} = 36 \text{ GPa}$) de área variable, cuya función depende de la coordenada vertical y, y está descrita por la siguiente expresión:

$$A(y) = A_0 - \frac{A_1}{b}y$$
, Con $A_0 = 80 \text{mm}^2 \text{ y } A_1 = 20 \text{mm}^2$ (1)

- 1. Obtener la expresión matemática correspondiente al desplazamiento axial de las barras. **0.8 Pts.** Resp: $\delta_{barra} = \frac{Fb}{EA_1} \ln \frac{A_0}{A_0 A_1}$
- 2. Si el desplazamiento de la placa rígida superior, es de $\delta=0.5$ mm, calcule el módulo de young E del bloque. **1.4 Pts.** Resp: E=1.3 GPa.
- 3. En base a lo obtenido en el inciso anterior, Obtenga la variación de las dimensiones a,b y c en mm. **0.8 Pts.** Resp: $\delta_x = -0.36$ mm, $\delta_y = -0.5$ mm, $\delta_z = -0.34$ mm

(b) Modelo de barra de área variable

Figura 2: Elevador