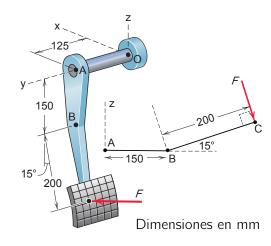
ENTREGA: Lunes, 27 de Abril de 2015

TAREA 3: ANÁLISIS DE FALLA ESTÁTICA

Problema 1

El depósito cilíndrico de pared delgada con diámetro $D=80\,\mathrm{mm}$ y espesor $t=5\,\mathrm{mm}$ está sometido a una presión $p=2\,\mathrm{MPa}$. Sabiendo que sobre un elemento diferencial de la pared del cilindro el esfuerzo circunferencial se obtiene como $\sigma_c = \frac{pD}{2t}$ y el esfuerzo longitudinal como $\sigma_l = \frac{pD}{4t}$, se pide: (a) Calcular los esfuerzos máximos sobre el elemento y dibuje el círculo de Mohr.


- (b) Calcular los esfuerzos sobre el elemento en un plano orientado en 30º (sentido antihorario) con respecto al plano de los esfuerzos principales.

Problema 2

La figura muestra el pedal de una máquina que se acciona mediante la aplicación de una fuerza $F=250\,\mathrm{N}$. Determine el diámetro de la varilla OA del pedal que se fabricará en acero AlSI1020. Use la teoría de ED con un factor de seguridad N=2. Para sus cálculos use el siguiente esquema:

- (a) Obtenga los diagramas de fuerzas y momentos.
- (b) Calcule los esfuerzos máximos.
- (c) Determine el diámetro de la pieza mecánica.

Obs: No considere concentración de esfuerzos en este problema.

